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Eulerian direct interaction is used to close Liouville’s equation central to the transport 
of particles in a turbulent fluid where the dominant drag force is derived from the 
particle and local fluid velocities. The reliability of the equation is then tested by com- 
parison of solutions with those of a computer simulation of particle motion with 
Stokes drag in a random velocity field. Using an empirical drag law accurate for 
particle Reynolds numbers up to 500, formulae are derived for the statistical moments 
central to particle dispersion for a weak drag force operating in a Gaussian isotropic 
stationary velocity field. These show for instance that the long time particle diffusion 
coefficient is in general greater than the equivalent value based on Stokes drag. 

1. Introduction 
In a previous paper (Reeks 1977) we considered the statistical motion of particles 

immersed in a turbulent fluid, for a drag force assumed linear in the relative velocity 
between particle and local fluid velocity. In this situation all statistical moments 
associated with the particle motion are linear functionals of the equivalent fluid point 
average evaluated along a particle trajectory. It was the evaluation of this latter 
quantity that formed the basis of the analysis using a method previously employed by 
Phythian (1975) in studying fluid point motion, based on a second approximation to an 
iterative solution to the equation of motion. The technique is however only tractable 
analytically for linear drag which has a somewhat limited range of applicability, being 
restricted to particles with Reynolds numbers very much less than unity. The formula- 
tion here was Lagrangian and the closure problem implicit in an Eulerian framework 
manifested itself in the problem of finding a relationship between Lagrangian variables 
and Eulerian variables which formed the natural description of the turbulent velocity 
field. 

We would like in this paper to reconsider an Eulerian formulation in an attempt to 
derive a transport equation for an ensemble of particles initially prepared in a known 
statistical manner. We adopt an Eulerian formulation firstly because it represents a 
framework in which we can more readily handle more general drag forces and secondly 
the closure problem we shall encounter is similar to that encountered in hydrodynamic 
turbulence but with none of the very formidable difficulties associated with an 
explicitly dynamically nonlinear equation of motion. Indeed the quest for a reliable 
closure approximation in turbulence has afforded us with closure schemes that are 
applicable to any general stochastic system. 
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We shall restrict ourselves to drag forces that are functionally dependent upon the 
particle and fluid velocities but as such the precise dependence remains unspecified. 
We have done so as a mere matter of expediency and because such drag forces form a 
natural extension of the linear drag case we referred to earlier. Such forces are akin 
to the drag force generated in steady motion where the force aligns itself with the 
relative velocity between particle and fluid. In  practical terms we are referring to the 
type of motion encountered in a turbulent gas where the high ratio of particle to 
fluid density precludes the influence of drag forces derivable from particle fluid 
accelerations. In addition we assume that we are dealing with low concentrations 
ensuring that particle-particle interactions together with any influence of the particles 
on the levels of turbulence can be neglected. In this sense a, statistical average 
over an ensemble of realizable states of a single particle becomes an equivalent 
description. 

Although from a practical aspect we are usually concerned with the dispersion of 
particle density in real space, the dynamical equations are such that real space alone is 
an incomplete framework in which to formulate the problem. For the particular 
drag force we are considering, the equations of motion are coupled equations in both 
particle velocity and position - what position a particle occupies is intimately bound 
up with its history in velocity space and vice versa. It is clear that a necessary 
starting point for an Eulerian formulation will be the Liouville equation for the 
particle density in the six-dimensional particle phase space for a single realization of 
the turbulence. 

To be more explicit the stochastic process we are referring to is defined by a particle 
equation of motion of the form 

dv 
- dt = p w v ,  u(x, t ) ] ,  

where v is the velocity of a particle at  time t and position x in a turbulent velocity field 
for which ~ ( x ,  t )  represents a single realization; Y is a prescribed function of v and u 
whose statistical behaviour is derived from the statistics of the turbulent velocity field. 
We define it such t h a t  when the particle Reynolds number is much less than 
1 Y = u - v. In this way p-1 is identical to the particle relaxation tinie for Stokes drag. 
For convenience we shall suppose that v, X, t are dimensionless variables by suitable 
scaling of the measured variables on the intensity wo and typical wavenumber k, of 
the turbulence. In this instance p becomes ( T ~  k, w0)-l, where rp  is the particle relaxation 
time in normal units. By so doing, /3 is then a direct measure of the strength of the 
interaction and Y a measure of the departure from Stokes drag. 

For a single realization of u(x, t )  Liouville’s equation for the phase space density 
p(v, x, t )  is 

where L is the Liouville operator, explicitly 

a a L = v.--+p-.yI. ax av 

An average of the solutions of this equation over all realizations of the turbulence 
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represents a distribution P(v, x, t )  which we may formally identify with the probability 
density in phase space for an ensemble of states generated in a prescribed statistical 
manner by the turbulent field. Our aim is to formulate an explicit equation forp(v, x, t )  
rather than solving equation (1.3) repeatedly many times and averaging. 

Since equation (1.3) is explicitly linear in p, 

p ( v ,  x, t )  = d(v, x, t ;  v’, x‘, t ’ )  p(v’, x’, t ’ )  dv‘ dx’, (1.4) s 
where 6 is the Green’s function which satisfies 

(;+ L)  6(v, x, t ;  v’, x’, t ’ )  = d(v- v’) d(x- x’) 6(t- t ‘ ) .  

The fact that there is no reaction of p on Y means that d is a functional of Y and not 
of p, so that together with an assumed statistical independence of p and Y a t  some 
initial time t’ it means 

p(v, x, r )  = {p(v, x, t ) )  = G(v ,  x, t ;  v‘, x’, t ’ )  (p(v’, x’, t ’ ) )  dv’ dx‘, (1.6) s 
with 

G(v, X, t ;  v’, X, t ’ )  = {Qv, x , t ;  v’, ~‘,t’)). 

So that in order to determine P it is sufficient to find an equation for G .  If we decom- 
pose Y into an average part and a fluctuating part 9 we may write equation (1.5) 
more conveniently as 

a -  x, t ;  v’, x’, t ’ )  = -,8- . W e +  d(~- v’) 6 ( ~ -  x’) 6( t - t ’ ) ,  
f3V 

where the averaged Liouville operator 1 is given by 

a a 
ax au 

E = v .  - + p- .a, 
so that the equation for G is naturally 

( i + E )  G ( v , x , t ;  v’,x’,t’) = -,8 -.Yd + 6 ( v - v ’ ) 6 ( x - x r ) 8 ( t - t ’ ) .  
(aav ) 

The closure problem implicit in (1.8) is almost self-evident. The term on the right-hand 
side is as yet undetermined. Using equation (1 .7)  to form an equation for (?a) yields 
triple moments of the form (YYG), and similarly the equation for third-order moments 
involves fourth-order moments and so on, so that a solution for p is bound up in an 
infinite hierarchy of moment equations. The closure approximation adopted in this 
paper is that provided by Kraichnan’s Eulerian Direct Interaction approximation 
(EDI). To date ED1 and the more sophisticated but less tractable Abridged Lagran- 
gian-History Direct Interaction (ALHDI) have proved the most successful self- 
consistent approximations in closing the strongly interacting moment equations of 
hydrodynamic turbulence. This success seems quite remarkable when considering the 
formidable nature of the turbulence problem and the relative simplicity of the closed 
equations, which involve second-order moments only. But then their formulation does 

l v l y , .  
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not rely in any way upon arbitrary truncation of the moment equations themselves. 
These facts alone make ED1 and ALHDI very powerful and attractive techniques in 
approximating the statistical behaviour of dynamically simpler systems with an in- 
herent closure problem. Indeed when applied to the problem of passive scalar diffusion 
in an isotropic random Gaussian and stationary velocity field, ED1 gives results in 
remarkably good agreement with those of a computer simulation (Kraichnan 1970a). 
This is of course particularly encouraging since passive scalar diffusion represents a 
special case of the systems studied here, namely the case of ,8 + co, when fluid and 
particle motions are identical. Furthermore it probably represents the most severe test 
of the reliability of the approximation for this class of systems. However it must be 
admitted that the case of passive scalar diffusion in helical turbulence (Kraichnan 
1977a) suggests that this good agreement may be limited to isotropic situations. 

There are however more profound reasons which make ED1 more acceptable and 
more appealing than any other closure approximation. In  his remarkable paper on the 
dynamics of nonlinear stochastic systems Kraichnan (1961) showed that ED1 is an 
exact closure to a particular model of the dynamic system which he has called the 
Random Coupling Model (RCM) and consequently has certain consistency properties 
lacking in other approximations. In  other words we would expect a greater degree of 
physical realizability with ED1 than with other approximations which do not have this 
model relationship with the real system. On may see ED1 as the simplest truncation of 
a renormalized expansion of some averaged Eulerian property common to a class of 
systems containing the real system but it would seem that it is only this term in the 
infinity of terms that corresponds to a model dynamics. However this is not meant to 
imply that ED1 is the only closure for which a model is available with its guarantee of 
realizability. In  the case of turbulence for instance Kraichnan (1971) has constructed 
an ‘almost Markovian Galilean invariant’ model which has a greater degree of 
realizability than EDI. The unique quality of ED1 in model dynamics of statistical 
systems is its implementability: one can always set up a renormalized expansion. 

Renormalization represents a formally correct and elegantly simpler procedure in 
which we can generate ED1 rather than considering the RCM equivalent, and we shall 
use this fact to set up a renormalized expansion for the term on the right-hand side of 
equation (1.8). For the RCM equivalent we refer the reader to Kraichnan’s original 
paper and to the application of ED1 to a Vlasov plasma (Kraichnan 1967), where the 
electric field is a direct counterpart of Y, in the stochastic acceleration problem. In 
future for the sake of brevity and convenience we shall assume a degree of familiarity 
with both these papers. 

2. ED1 in relation to renormalized perturbation theory 
It is more revealing to write equation (1.7) in matrix shorthand notation, namely 

- 
where 1 is equivalent to (Pa/&)  .Y, I the unit operator, and G(O) the solution of the 
linear equation 

G(O)-l(v, x, t ;  v’, x‘, t ’ )  being explicitly E(v, x, t )  6(v - v’) &(x - x’) &(t - t ’ ) .  Equation 

G(O)-lG(O) = I, 
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Equation (2.2) forms the basis of a formal primitive perturbation series for 6 in terms 
of functional powers of G(0) and Z, namely 

6 = GCO) - G(O)ZG(O) + G(O)ZG(O)JG(O) - G(O)ZG(O)ZG(O)ZG(O) + . . . . (2.3) 

Referring to d ( v , x , t ;  v',x',t ') by 6(1 ,2)  we may write equation (2.3) in a more 
expanded form as 

6( 1,2)  = G@)( 1 ,2)  - G@)( 1, 3) * Z( 3) G@)( 3,2) + G@)( 1,3) * Z(3) GO( 3,4) 

* Z(4) Gc0)(4, 2) - G(O)(l, 3) * Z(3) G(O)(3,4) * 44)  G(o)(4,5) 

*1(5)G(O)(5,2)+ ..., 
where * means a convolution over repeated labels. Averaging this equation yields a 
primitive perturbation expansion for G( 1,2) in G(O), assuming for convenience that the 
odd moments of t  vanish, namely 

G( l ,2)  = G(o)(l,2)+(Z(3)Z(4))G(o)(l, 3) *G(O)(3,4) *G(O)(4,2) 

+ (Z(3) 44)  45) Z(6)) G(O)(l, 3) *G(O)(3,4) *G(0)(4,5) 

*G(O)(5,6) *G(O)(6,2)+..., (2.4) 

where the averaged operator {Z(3)Z(4) ...) acts only on identical labels to the left in 
each G(O). The serious objections to using (2.4) directly as a basis for closure have been 
stressed elsewhere (Kraichnan 1966). The simplest way to obtain renormalization if 
only the first few terms are required is to revert the development of G in terms of G(O) by 
iteration to yield an expansion for G(O) in terms of functional powers of G and Z 
(Kraichnan 1977 b) . 

The first two terms are explicitIy 

G(O)(l,2) = G(l,2)-{Z(3)Z(4))G(l, 3)*G(3,4)*6(4,2).  (2.6) 
Now from (2.3) 

(1(1)6(1,2)) = -(Z(l)Z(3))G(O)(1,3) *G(O)(3,2) 

- (Z(1) Z(3) Z(4) Z(5)) G(O)(l, 3) *G(O)(3,4) *G@)(4,5) *G(0)(5,2) 

+ .... (2.6) 

Substituting for G@)( 1,2)  we have 

(41) m, 2)) = -MI)  43))G(1,3) *G(3,2) 

- [QCl) Z(3) Z(4) Z(5)) - Q(1) R 5 ) )  O(3) 44)) 

- Q(1) Z(3)) ((Z(4) t(5))l G(1,3) *G(3,4) *G(4,5) *G(5,2) 

+ .... (2.7) 

The first term in this series corresponds to the ED1 approximation. Presented in this 
very formal way there is no reason why this renormalized expansion should give any 
better results than the primitive expansion, except perhaps that each term does imply 
classes of terms from all orders of the primitive expansion. Indeed it is likely to suffer 
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from the same problem of secularity. I ts  meaning can be demonstrated more trans- 
parently when we consider it in relation bo a class of systems suggested by equation 
(2.2), of the form 

(2.8) G-le ,  = I+(h2C,+h4C4+ ...) eA-hZ6, 
(see, e.g., Phythian 1978). A 

h = 1, we deliberately generate the actual system we are interested in, so that 
For h = 0 we have a non-random statistically sharp system, G-lG, = I and, for 

X2 + C, + . . . = G(O)-’- G-l, (2.9) 

where each C is a non-random kernel. In  propagator renormalization we arrange for the 
averaged Green’s function to be the same in every system, i.e. independent of A. Each 
Z can be written as functional powers of B so that equation (2.9) represents a closed 
equation for G. The difference from primitive perturbation theory is that we perturb 
about a general non-random system so that there is greater freedom to relate this 
system t,o the random system of interest. It is a way of linearizing the nonlinear random 
effects of the original system in a way that is reflected in the behaviour of the non- 
random system. It is reasonable to suppose that the more the averaged behaviour of 
the nonlinear system, defined in terms of the statistical moments, has in common with 
the non-random system a t  h = 0,  the better the latter will represent the total 
behaviour of the original system. In  propagator renormalization the non-random 
system here has a common response function G. In  the more general theory of vertex 
renormalization there is complete freedom to specify the degree of similarity but the 
number of closed equations naturally increases. Within this general scheme we might 
make (p”(l)p”(2)) identical in either system and so on but the evidence from passive 
scalar diffusion suggests that truncation after the first term on the right-hand side 
of equation (2.7) will be a sufficient representation. 

In terms of renormalization ED1 corresponds to the non-random equation 

where 
(2.10) 

There is a marked similarity between the non-random system implied by equation 
(2.10) and the RCM, which for the case of turbulence has been referred to elsewhere 
(Kraichnan 1970b). The Green’s function in the non-random system is naturally 
statistically sharp but this is also true of the response function of the collective systems 
in the RCM when the number of the realizations of the original system which linearly 
compound a collective system tends to infinity. This is perhaps not too surprising since 
the generation of each collective system is similar to an averaging process on the 
original system. Additionally the response function of the RCM before randomizing 
the couplings is equal to the response function of the original system, analogous to the 
Green’s function for the h = 0 system. The randomization of the couplings between 
the equation of motion of the collective system is such that the magnitude of the 
coupling remains unchanged but the phases of these interactions are changed randomly 
in such a manner as to retain essential consistency properties of the original dynamics. 
I n  the equivalent primitive perturbation expansion for (ZG) only certain classes of 
interactions survive and these turn out to be equivalent to the closed form given by 
(2.10). Remarkably, all dependence on third and higher moments of Z are eradicated. 
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It has previously been remarked (Kraichnan 1966) that a closure scheme may be 
regarded as physically acceptable if it can preserve sufficiently the basic boundedness 
and invariance of the true dynamics. In the real system the simplest integral conserva- 
tion laws associated with equation (1.2) are 

q-pcv, x, t )  dvdx = 0, 
at 

(2.11) 

y [pyv, x, t )  + @“v, x, t ) ) ]  av ax = 0, (2.12) 
at 

together with the energyrelationship between the inertial and particle-fluid drag forces, 

“ I  ;/[p;-pv.Yp-pV.(p) dvdx = 0. 
- 

(2.13) 

All o f  these relationships survive in the RCM because they reflect unaveraged conserva- 
tion properties built into the equation for model Green’s functions. 

Equation (1.2) howeverimplies an important inequality, namely that, if p(v, X,  t )  is 
everywhere positive at  some initial value of t ,  

P(V, x, t )  2 0, (2.14) 

for all v, x at all subsequent values o f t .  The simplest statistical inequality associated 
with (2.14) is 

F(v,x,t) 2 0. (2.15) 

There is no guarantee in the RCM that this inequality will be satisfied for all possible 
forms of the drag moment-the concept of a particle trajectory is totally lost in the 
‘scrambling’ of the original dynamics to form the collective system. This is the one 
disturbing feature of RCMs though it would seem that it is an inequality less likely 
to be violated than in other closure schemes. 

Written out in full, the ED1 equation for this system is 

G(v, X, t ;  v’, x’, t’) 

= Ba~S:,dSSdwdyG(v,x,t; ~ , Y , ~ ) - - C U ~ ( V , ~ , ~ ) ~ ~ ( W , Y , ~ ) ) G ( W , Y , S ;  a -  v’,x’,t’). 
awj 

(2.16) 

The final velocity distribution achieved by the ensemble is seen here on a macroscale 
as arising from a precise balance between the convection current q p  and the diffusion 
current 

which is not locally dependent upon the particle-phase space concentration as it would 
be for a gradient transport model. 

As a basic test of the reliability of the ED1 equation we shall solve it in situations 
where deficiencies in the model are most likely to show up. In this latter sense the 
detailed form of Y is not particularly important, only the strength and time scales of 
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the interaction. The simplest possible interaction to take is Stokes drag in fields which 
are homogeneous and stationary, i.e. 

- 
Y = u-v ,  (2.17) 

forming an accurate description of motion for particle Reynolds numbers 1. 

3. The solution for linear drag 
We wish to consider first motion with linear drag derivable from the simplest possible 

fluid velocity fieId for which an exact solution is known-namely a velocity field in 
which the velocity is constant in each realization but randomly distributed from one 
realization to the next. It is equivalent to turbulent motion in which the time scale of 
the fluid motion is infinite or a t  least very large compared with the relaxation time of 
the particle. Explicitly 

&v, x, t )  F(o, Y, 0) = 4j, 

and for convenience we shall set (ui) = 0. 
It is clear that as far as the real system is concerned the particle will feel a constant 

drag during t' to t for each realization of u(x, t ) .  As far as the field is concerned we need 
only specify the probability density P(u) of fluid velocity u at any time or place. Now 
the velocity v of a particle a t  time t ,  acted upon by a constant u, starting with velocity 
w a t  time 6 is simply 

v = w e-l(t-0 + u( 1 - e-B(t-0), 

G(v, t ;  w, f ; )  = dt*  ~ ( v  el@* - o - u(d(t* - 1)). 

(3.2) 

(3.3) 

for which the velocity distribution 6(v, t ;  o, 6 )  is 

G(v, t ;  o, f ; )  is thus precisely given by 

G(v, t ;  o, E )  = eB"-B S(v el(t-o - o - u(el(t4)-  1)) P(u)  du. (3.4) s 
Let us now compare this exact solution with the solution given by the ED1 equation 
under these conditions. Clearly we may write G(v, t ;  o, c )  in the form G(s, t - 5) with 
s = v-c~e-b(~-D.  It is simpler to consider now the equation for the characteristic 
function of s,  rather than deal with G direct. Explicitly 

v v 
G(k, t - 6) = (exp ik. s) = P(k( 1 - e-B(t*)), (3.5) 

v 
where P(k)  is the characteristic function for u. 

respect to v gives 
Integrating the ED1 equation over all x, and taking the Fourier transform with 

where for convenience we have set t' = 0. 
Replacing P(t - c )  by 7 ,  we have as t + 00 

a6 QI 

ak 0 
k .  - = -kz/ e-rG(ke-r)8(k(l-e"))d7. (3.7) 
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This may be written as 

a&k) k u  
- = - 1 G(k - z )  G(z)  dz. 

ak 0 

For which the solution is (Roberts 1961), 

giving for the equilibrium velocity distribution 

(3.10) 

This solution would be consistent with our original dynamics if P(u)  was identical in 
form to the above. 

It is significant that in the RCM equivalent of this system the precise shape of P(u) is 
irrelevant to the final outcome of G(v, t); indeed, all fields so long as u is constant for 
each realization will give the same unique distribution. In  the true dynamics, however, 
the final equilibrium state depends strongly on the total form of P(u) in that G(v)  and 
P(v)  are identical. This precise correspondence is lost in the RCM because of the 
imposed randomization of the couplings. A reduction in the effective time and length 
scales associated with the true dynamics has a similar effect: the dependence of G(v) 
on higher moments of the field is strongly reduced to zero and the final state is influenced 
only by the form of the second moment of the field. It is reasonable to  suppose that in 
the situation we have analysed the influence of the higher moments on the form of G 
is likely to be greatest, though for a P(u)  given by (3.10) this amounts to precisely zero. 
It is more likely in a real situation for P(u) to be close to Gaussian. The distribution in 
(3.10) is, however, physically acceptable - it  is everywhere non-negative and contained 
within a non-zero volume of velocity space. These are important features of the RCM 
which do not survive in any finite-order perturbation theory or in quasi-linear theory. 
The sharp cusp and cut-off a t  v = 2 are however unattractive features though one might 
reasonably expect the cusp to relax as the correlation time associated with the second 
moment becomes comparable with the relaxation time of the particle (Kraichnan 
1967). A comparison between (3.10) and a Gaussian velocity field (Roberts 1961) gives 
identical second moments, the fractional differences in the 4th, 6th and 2nth moments 
being 9 ,  $ and [l - zn/(n+ l)!] respectively. 

The interesting feature of the system we have just analysed is that in terms of 
establishing an equilibrium velocity distribution the conditions are identical to particle 
motion coincident with that of the fluid, i.e. p + 00. It is evident that, in this instance, 
the velocity distribution will be established in an infinitely short time so that on the 
time scale of the particle motion the fluid will appear perfectly correlated. The distribu- 
tion of velocities turns out to be identical in form to the solution of the ED1 equation 
for passive scalar diffusion with short diffusion times (Roberts 1961). This is perhaps 
not surprising though it is significant that this result is unique to ED1 with a linear 
drag law whereas in reality, so long as the drag is of the form @( Iu - v I )  (u - v) with 
@ always positive, it must always be true. For real times greater than the correlation 

19 FLY 97 
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time of the turbulence the form of the fluid velocity correlation is effective in controlling 
only the dispersion of particles in real space. It is instructive at this stage to formulate 
the diffusion equation in real space from the original ED1 equation (2.16) for particles 
in stationary homogeneous turbulence for which p -+ 03. 

For linear drag in a stationary fluid, 

{%(v,x, t )%(%Y,tD = B“Ui(X,t) = P2R&-y, t - t ) ,  

and the ED1 equation (2.16) degenerates into 

G(v,  X, t; v’, x’, t’) 

Using integration by parts the right-hand side transforms to 

We are interested in the case of p -+ 03, and values oft  - t‘ > l/p (which is asymptoti- 
cally satisfied by all real times as ,8 + c~). Under these conditions 

G ( v , X , t ;  v’,x’,~‘) + G(v; X-x’; t-t‘). 

If this however were identically true for all times t’ < 5 < t ,  then the right-hand side 
would be identically zero. However with /3 -+ co, for values of 6 such that t - f - 1/P 
the fluid motion is perfectly correlated and we know from the previous example that 
in these circumstances G(v,  x, t; a, y, f )  will behave as G(s ,  r, t -  &), where 

(3.11) 

r being obtained in a similar manner to s from the equation for particle displacement 
with a constant u. Since the w integration is only significant for values t - ( - 1/p, i.e. 
t -+ t ,  we may legitimately write G ( w ,  y, 6 ;  v’, x’, t’) as G(w; y - x‘, 5-  t’). Using these 
substitutions the equation for the characteristic function of s and r, namely 

6(k, q, t -g )  = (eqk*a+Q-r)), 

as P+ 00, can be shown to be 

” v 
= - ~ 2 / :  dT/ dp kii(kje-8r + - ”-” (1 - e-pT)Rij(p, T) G(k, q - p, T) c“(0, q, t -  T) 

P 
(3.12) 

with t’ = 0 for convenience, and Rij(p, t - [) the Fourier transform of Rir with respect 
to x-y. 

Now 

u 

v 

G(0,  q, t )  = (exp iq . r). 
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Putting k = 0 in equation (3.12) we have 

(3.13) 

Comparing the left-hand side of (3.13) with the right-handside in equation (3.12) gives 
forp+ao 

a v  a w  
- 0, q, t )  = q ‘X G(O,q, t) .  at 

%-.G(O,q,t) a w  = -Sbd7SdPnt (p , -q , )~~ , (P ,7 )n(O,q ,P ,7 )~ (o ,q ,~ -7 )  (3.14) 

ak, 

a u  

at 

so that from (3.13) we have finally 

Sk s - G(0,  q, t )  = - d7 dp qi(pj - qj) &(P, 7) &O, q - P, 7) &O, q, t - 7 ) ,  (3.15) 

which is the ED1 equation for passive scalar,diffusion in a stationary homogeneous 
field (Roberts 1961; Kraichnan 1970). 

We now consider the general case of a finite p where we would expect a lack of coin- 
cidence between particle and fluid motion. This has been recently studied by Reeks 
(1977) and by Pismen & Nir (1978) and we shall use their results as a basis for com- 
parison. Unfortunately, we have found this general case unamenable to exact solution. 
As an alternative we have used crude approximations for G that are equivalent to 
Reeks’ first approximations to particle motion; these are then used in the diffusion 
term of the ED1 equation to yield a soluble equation that still retains the essential 
character of EDI. We begin by replacing G(v, x ,  t ;  w, y, c )  by the zeroth-order 
approximation 

G(O)(v, x ,  t ;  o, y, 6) = e38(t-5, 6 ( 8  - o) 6(Y - y), (3.16) 
where 

and 
fi = v efl(t-0, 

(3.17) 
V y = x -  - (em-5)- 1)  
P 

to obtain 
a a  - -p- . v + 
at av G(v, X ,  t ;  v’, x’,  t’) 

It is interesting to note that (3.18) is identical to the quasi-linear approximation. We 
now replace Rij[(v/p) - l) ,  t - t] by its value for zero motion (p = 0), namely 
Rij(0, t - 6) .  

Now equations (3.17) define a transformation 

1 !2 = O(v,t-E), 

Y = @ ( V , X , t - - [ ) .  

v = O(v, t - t ’ ) ,  

x = @(v, x, t -  t‘), 

Let us thus define variables 

(3.19) 

(3.20) 

19-2 
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which imply an inverse transformation 

v = @-1(V, t - t ' ) ;  x = a?-l(V, x, t - t ' ) ,  
so that 

00-1 = 1, QQ-1 = 1. 

(3.21) 

We now define a function x(V, X, t - t '), such that 

x(V, X, t - t ' )  = e3@(t-t')G(v, x, t - t ' ) ,  (3.22) 

with V' and X' understood. By so doing, the resultant equation for x is entirely local in 
V and X and devoid of any convection terms. Explicitly 

(3.23) 

We now replace x(V, X, 6) by x(V, X, t ) .  There is no physical justification for this 
replacement at  this stage - only with regard to the final solution. We have broken out 
of the model constraints to give, as we shall see, a form for G which is devoid of the 
cusp-like quality of G that is the solution of ED1 as p -+ 00, 

G ( v , x , t ;  v, x',t') 
ax 

aG 
agj 

t-t '  

0 = B2gf R,i(t-6) (1  -e-@(t-B)dE-. (3.24) 

If we again define variables 

(3.26) 

the above equation is translationally invariant in six-space when expressed in these 
new variables. Forming the characteristic function of s and r, we have 

Sb a6 a6 - + (pk - 9) . - = - G(  k, q, t ) at ak [k, kj/32e+ + Pki pi( 1 - e - @ ~ ) ]  Rij(O, 7 )  d7 (3.26) 

with t' = 0 for convenience. 
It is interesting to note that (3.26) can be obtained from (3.12) by putting p = 0, 

G(O,q, t -T)  = 1. 

The arguments leading to (3.12) are however only strictly valid for p --f co. It is 
difficult to see to what extent these arguments as they stand are valid approximations 
for arbitrary p. If (3.26), based on the approximations preceding it, is an acceptable 
first approximation to C we must conclude with hindsight that this must also mean 
that (3.12) is approximately valid for all /3. 

For isotropic turbulence the solution is a Gaussian of the form 

G ( k , q , t )  = exp [-~CU11k2+2~12kp+rUzz42)1, (3.27) 
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wherelull, p12, pUz2 are the second moments associated with r and s and are the solutionsof 

with pl2(0)  = puZ2(O) = ,ull(0) = 0. The solutions are 

I 
p12(t) = (1 - e-It 1 - e-B(t-7)) R(O,7) dr, (3.29) 

t 1 e-pt 
i [ ~ ~ ~ ( t )  = 2 1  ( e P 7 + 1 )  

0 

We note that, in the limit t -+ 03, 

/Ll2 = ( V i X i )  = 1; R(O,7) dr.  

(3.30) 

These expressions are equivalent in form to the correct p, where R(O,7) is identified 
with the fluid Lagrangian velocity correlation U ( r )  along a particle trajectory. For 
zero motion R(O,7) and U(T)  are identical, but in general R(O,7) 2 U(7) ,  the difference 
only becoming significant a t  ,8 = 0 (Reeks 1977). It would seem appropriate here to 
briefly mention the ALHDI approximation for this system since it bears some resem- 
blance to equation (3.24). Rij(O, t - f ; )  is replaced by the correlation coefficient 
(ui(x,  t )  u j (v ,  X ,  tlf;)), where the Lagrangian velocity field u(v, x ,  tlf;) is the fluid velocity 
measured a t  time f ;  along a particle trajectory which passed through (v, x )  a t  time t .  
To close the equation we of course require an equation for this correlation coefficient 
which is obtained in a similar manner to the equation for G (see, e.g., the moment 
equation for the generalized electric field co-ordinate in the Vlasov plasma, Orzag 
1968). 

Returning to equation (2.16) we now replace G in the diffusion term for linear drag 
by the approximate form in (3.271, to give a second approximation for G, namely 

a - + v . -  -Bdiv, v G ( v ,  x ,  t ;  v’, x‘, t ‘ )  
at ax 

= p2&[:,Go(v-we-p(tfi;  x-y-- 0 (1-e-8(t f i )  

P 
V w - v’ efl5-t’); y - x’ - - (1 - e-8(5-t? 
P 

where Go refers to the approximate Green’s function defined by (3.27). 
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Whereas in the first approximation the equation for G was translationally invariant 
in both s and r, this is no longer true of this equation. In fact the form of U ( s ,  r, t - t ' )  
will depend on the initial v'. By using the primitive perturbation expansion (2.3), this 
can be shown to be also true of the real G(s, r). Forming the characteristic function of 
r and s and setting t' = 0 for convenience 

x exp [ - ip . v'e-@( 1 - dr)] (3.32) 

so that, unless t -+ 00, the process is no longer isotropic in r and s except for the trivial 
case of v' = 0. 

We now use this equation to generate the second moments of s and r. For divergence- 
free flows we have 

(3.33) 

where 

- $ ( l - e - 8 7 ) , O , t - ~  

1 V' 
x G,(O, -p ,  r )  exp e-@(l- e87) . (3.34) 

The explicit form for Uij(t, 7,  v') given here is 

ip . v'e-fl( 1 - eb') 

It is interesting to compare this expression with the equivalent form used by Pismen 
& Nir based based on Corrsin's hypothesis, namely 

4(7) = ~ P R , ( P ,  7 )  exp { - Lip. ~ 0 7  + 4p2 ( r W I ) ,  (3.36) 

where v, refers to some steady drift velocity imposed on the motion by some constant 
external force, e.g. gravity. In  this respect the qualitative behaviour of a constant 
drift velocity is equivalent to the effect of an initial velocity v', except that the effect 
of the latter dies away to zero as the motion progresses. The presence of the term 
exp [ - &p2( l/P2) (1  - e8T)2,ull(t - T)] in (3.35) is unique to EDI, and reduces the effective 
dispersion in relation to that implied by (3.36). Pismen & Nir use the actual rf(7) in 
(3.36) to obtain a closed differential equation for rf(7) from equations (3.33). We could 

S "  



Eulerian direct interaction applied to a turbulent jluid 583 

adopt the same procedure here by replacing p11(7) and p 2 2 ( 7 )  by ( ~ 3 7 ) )  and ( 8 3 7 ) )  

respectively. We shall not do so since the resulting equations are now integro- 
differential in form and less amenable to solution. The evidence suggests (Lundgren & 
Pointin 1976) that using zero motion approximations p l l ,  pZ2  will give values that are 
consistently close to the values obtained by complete solution of the closed equations 
in r t  and 89. They are evidently iteratively rapidly convergent. 

An important test of the reliability of these approximations is provided by a com- 
parison with a computer simulation in which we solve the equations of motion for a 
particle in a divergenceless, stationary, homogeneous, isotropic, Gaussian, velocity 
field. The procedure for generating such a field from an initial array of Gaussian 
random numbers is identical to that used by Kraichnan (1970~) in his simulation of 
fluid point motion. We shall adopt the procedure that produces a three-dimensional 
field with an Ri,(x, 7) of the form 

explicitly, with a dimensionless energy spectrum of the form 

E@) = 16 - p4exp-2p2 and f ( 7 )  = e -P .  (3* 

(3.37) 

(3.38) 

The form of f ( 7 )  gives 

& 2 ( 7 )  = 7 - - + - J( 2n) erf 7 + 2(e-B+* - 1) ( ; e:) 

So that explicitly 

with 

(3.40) 

(3.41) 

and 
V‘ 

P 
01 = - e+(l  -el+). 

The axes are defined in terms of v‘, which is taken to be in the i = 1 positive direction. 
The particular particle studied in the simulation had a ~3 = 1 and V’ = 1 and averages 
corresponding to those given in equations (3.33) were evaluated for 1000 realizations 
of the field. The effect of a v’ = 1 was found to be extremely weak both in the approxi- 
mation and in the simulation so much so that the process could be regarded as iso- 
tropic in the space of r and s within the error of the simulation. The results are hence 
plotted as if the process were truly isotropic. The comparison between theory and 
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F~GVRE 1. Comparison of theory with computer simulation. Curves obtained from equations 
(3.33) with ,4 = 1, v’ = 1. Data points based on 1000 realizations of field. - - -, indicates the 
equivalent long time fluid point, diffusion coefficient. 1 is real time. 

simulation, shown in figure 1, is remarkably good, well within the error of the simulation 
in some cases. It is interesting that the long time particle diffusion coefficient is greater 
than that for the fluid point (Kraichnan 1970a, b ) ,  a general feature of this system 
referred to  previously (Reeks 1977). The comparison between this simulation and 
Pismen and Nir’s approximation is also very good; the effect of the pll(t - 7) term in 
Uij appears to be very wea,k and likely to be even weaker as one moves towards higher 
or lower values of j3. It does, however, improve the approximate behaviour of the 
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FIGURE 2. Comparison of theory with computer simulation. p = 1, v' = 100. 

system. The effect of an initial velocity upon the moments of r and s was found to be 
significant only a t  very large values of v', as shown in figure 2 where the difference 
between moments associated with i = 1 are markedly different from those for i = 2 , 3  
and significantly less than the equivalent values a t  v' - 0, for k,v,t - 1. The most 
interesting result of tkis simulation is indicated in figure 3.  In (a)  and (b )  the charac- 
teristic function of s, a( k ,  t )  is evaluated a t  varioutvalues of time for values of k where 
G is significant. In  ( c ) ,  the characteristic function G(k,  q, t )  is plotted as a function of k,  
for various values of q, as t -+ co. In  both figures the relevant data points are compared 
with a Gaussian whose second moments are those calculated by the approximation. In  
all cases the agreement is extremely good allowing one to conclude that, within the 
error of the simulation, the process is Gaussian, a result that we could not conclude 
from any formal theoretical procedure. Only in the case of p = 0, can we show this 
result to be exact. 
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4. The motion of very inert particles 
The simplest and most instructive system in which we can consider the effects of the 

nonlinear terms in the drag force upon the statistical motion of particles is that 
corresponding to particle motion for which p < 1. This low value of ,8 means that the 
particle is sufficiently inert to possess velocities small in relation to the turbulent 
intensity. The relevant fluid timescale is that associated with the eddy decay time 
implied byf(7) in (3.37). We shall write 7 as 7 / T ,  where t is the real time, and definep-l 
in units of T ,  the decay time associated with f. The assumption of v < 1 means that we 
can write (2.16) in a quasi-linear form local in v and x, similar to the equation for 
Stokes drag with p -+ 0. Let us write Y more explicitly as 

Y = @(Re Ju - vl) (u - v). (4.1) 

Here Re is the 'turbulent' particle Reynolds number v,,dp/v, with q, the turbulent 
intensity, dp the particle diameter and v the kinematic viscosity. @ is such that 
@(O) = 1, and supposed to be in a form amenable to a power series expansion in 
Re Iu - v] . Assuming an isotropic distribution for u, symmetric about u = 0, then, for 
small v, we have 

21 - ,I3 (@(Re u )  + +Re u@'(Re u)) v 

and 

N U  

which we shall abreviate to {YtYi)- 

obtain for a stationary isotropic field 
Replacing G(v, x, t ;  o, y, 6 )  in (2.16) by &(v- o) 6(x - y) consistent with j3 -+ 0, we 

G(v, x, t ;  v', x', t ' )  = p2 G(v, x, t ;  v', x', t ' )  (4.4) 

fort - t' > 1. It is interesting to note that this equation can also be obtained by Fokker- 
Planck analysis (Sturrock 1966) and through the use ofJhe Bourret smoothing approxi- 
mation (Frisch 1968). Writing G as G(s, r, t )  we have G(k, q,  t )  as Gaussian of the form 

&k, 9, t )  = exp [ - *(P11k2 + 2P12k!? + P 2 2 P 2 ) 1  

with 

To evaluate (I) and (??) we shall adopt an empirical form for @ reliable up to 
particle Reynolds numbers N 500, based on measurements of drag coefficients for 
spheres in steady flow (Serafini 1954), namely 

@(Re) = 1+0*158Re3 (4.6) 
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and use a Gaussian for u, necessarily of unit variance. In  this instance 

N p( 1 + 0~258248Ret). (4.8) 
rYN 

The evaluation of (YY') is more complicated but straightforward. A two-point 
velocity correlation f for a time separation, 7 ,  is consistent with a Gaussian bivariate 
distribution in u and w of the form 

where ( u i w j )  = siif(.), (u;} = (ot) = 1.  
It is readily seen that, using (4.6) for 0, 

(?Ff) = ( (u lw l )  + 0-316Re* (u3ulwl) + (0-158), (u)w*u,wl)Ret), (4.10) 

where, in general, 

( U P W ~ U ~ W ~ )  = d w d u t P ~ Q ~ , w ~ P ( ~ ,  w). s (4.11) 

Now by writing u, w in terms of spherical co-ordinates ( u , @ ~ , $ ~ )  and (w,O,,$,) 
respectively, and performing the el, #1, O,, $2 integrations one can, after some labour, 
arrive a t  a power series in f given by 

m 
(4.12) 

16 
(upwQulol) = - 24(p+Q) C. A(m,p, q) f 2m+1 

3n m=O 

with 

m and n both integer. Depending uponp and q, the terms in (4.12) are either zero after 
the first few terms or the series rapidly converges. The moments relevant to (4.10) are 

precisely, and 
16 

(u*w~u,w,) = 2*P,2(9) (0*77803f+ 0.024502f + 0.00045175f5 + 0*0001460f7 + .. .). 
(4.14) 

Using the form off (7) given by (3.38) we have 

1; (??')d7 2: (1.2533 + 0.64733Re3 + 0.08578Re4). (4.15) 

It is interesting to quote the spatial diffusion coefficient, eii, and particle mean square 
velocity compared to that of the fluid, (v;), when the velocity distribution has reached 
equilibrium, 

1.2533 + 0-64733Ref + 0.08578Re4, 

(1 + 0.258248ReQ)2 
eii(m) = T u ~  9 (4.16) 
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(4.17) 

We note again that the long time diffusion coefficient is independent of inertia and 
greater then the equivalent fluid point diffusion coefficient. Furthermore, it is, in 
general, greater than the equivalent value based on Stokes drag. The Reynolds 
number is seen here as controlling the effect of higher-order terms which are additive 
to the overall particle timescale, and hence to an increasing particle diffusion coefficient. 
As a practical illustration (4 .16 ) ,  with Re = 200, gives a value for eii which N 1.5 of 
that given by Stokes drag. 

1. T 1.2533 + 0-64733ReP -+ 0.08578Re4 

( 1 + 0.3582-18Re8 (vf(o0)) = - 
7P 

5. Concluding remarks 
The basis of this paper has been to present a general transport equation to describe 

the behaviour of particles in a turbulent fluid, originating from a closure scheme based 
on EDI. It was limited to adrag law dependent upon the particle-fluid relative velocity, 
though this dependence was purely arbitrary and the character of the turbulence not 
necessarily stationary or homogeneous. For simplicity the specific examples,we have 
used for solution have involved linear drag in some way or other and degenerate forms 
of turbulence. To handle more general nonlinear drag laws where the overall motion 
is not quasi-linear in particle velocity would require an explicit calculation of (YY‘) 
as a function of particle velocity. This can readily be achieved for motion restricted to 
one dimension but is considerably more difficult when the extension is made to three 
dimensions. What is clear is that the closure term would involve f (v) a2/av2 which would 
enhance asymptotic diffusion based on purely Stokes’ drag but restrict it to the quasi- 
linear form derived in (4.1 6) as /3 + 0. 

A noticeable deficiency in ED1 is that in the limit ofp -+ 00 the resulting distributions 
depend upon the form of drag law. It would be interesting to see to what extent this 
depends upon the fact that we have used an Eulerian rather than a Lagrangian closure. 
Although ED1 yields a single closed equation, the fact that it involves terms which are 
functionals of the required phase space distribution has presented problems in 
obtaining analytic solutions and we have been forced to make initial approximations 
for the closure term except in trivial cases. We noted the resemblance between the 
approximate equation (3 .24 )  on which the Stokes’ law analysis was based and ALHDI. 
Indeed this equation is more logically a first approximation to ALHDI than EDI, and 
the basis of an iterative solution. 

What has emerged as a general property of this type of motion as opposed to that 
of a passive scalar is that we cannot solve for the particle density in real space without 
knowing its total phase space density even if the turbulence itself is statistically 
stationary. 

-- 
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